
THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics

MATH2050 Mathematical Analysis (Spring 2018)
Tutorial on Mar 28

If you find any mistakes or typos, please email them to ypyang@math.cuhk.edu.hk

All through this notes, I := R \Q is the set of irrational numbers.

Part I: Problems selected from the textbook

1. (Ex 5.1.4) Recall that the floor function is defined by [x] := max{n ∈ Z|n ≤ x}. Determine
the points of continuity of the following functions.

(a) f(x) = x[x],

(b) g(x) =

[
1

x

]
(x 6= 0).

Answer: (a) f(x) is discontinuous at nonzero integers.

(b) g(x) is discontinuous at integers.

2. (Ex 5.1.6) Let A ⊂ R and let f : A→ R be continuous at a cluster point c ∈ A. Show that
for any ε > 0, there exists a neighborhood Vδ(c) of c such that whenever x, y ∈ A ∩ Vδ(c)
then it follows that |f(x)− f(y)| < ε.

Proof: We can choose δ > 0 such that if x ∈ A ∩ Vδ(c), then |f(x)− f(c)| < ε

2
. By triangle

inequality, x, y ∈ A ∩ Vδ(c) =⇒ |f(x)− f(y)| ≤ |f(x)− f(c)|+ |f(y)− f(c)| < ε.

3. (Ex 5.1.9) Let A ⊂ B ⊂ R, let f : B → R and let g be the restriction of f to A (that is,
g(x) = f(x) for x ∈ A).

(a) If f is continuous at c ∈ A, show that g is continuous at c.

(b) Show by example that if g is continuous at c, it need not follow that f is continuous at
c.

Proof: (a) Easy to prove. (b) Consider f(x) = sgn(x) on B = [0, 1] and g(x) = sgn(x) on
A = (0, 1] and c = 0.

Remark: Please relate this question with Problem 1 in Class Exercise 6.

4. (Ex 5.1.11) Let K > 0 and let f : R → R satisfy the condition |f(x) − f(y)| < K|x − y|
for all x, y ∈ R. Show that f is continuous at every point c ∈ R.

Proof: ∀ε > 0, we can take δ =
ε

K
. Then |x− c| < δ =⇒ |f(x)− f(c)| < K|x− c| < ε.

Remark: In this case, we say that f is Lipschitz continuous and K is a Lipschitz
constant. We can see from above conclusion that Lipschitz continuity is a stronger property
than continuity.
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5. (Ex 5.1.12, Ex 5.2.8) Let f(x) = 0 for all x ∈ Q and suppose that f is continuous on R.
Show that f(x) = 0 for all x ∈ R.

Proof: If x ∈ I, then from the Density Theorem there exists a sequence (xn) ⊂ Q that
converges to x. Since f is continuous on R, it follows that f(x) = lim

n→∞
f(xn) = lim

n→∞
0 = 0.

For Ex 5.2.8, we can apply above conclusion to h(x) = f(x)− g(x).

6. (Ex 5.1.13) Let f : R→ R be defined by

f(x) =

{
2x if x ∈ Q
x+ 3 if x ∈ I

.

Find the points of continuity of f(x).

Solution: f(x) is continuous at c = 3 by noticing that

|f(x)− f(3)| = |f(x)− 6| ≤ max(|2x− 6|, |x+ 3− 6|) = 2|x− 3|.

If c 6= 3, we can choose two sequences (xn) ⊂ Q, (yn) ⊂ I both convergent to c. Then

lim
n→∞

f(xn) = lim
n→∞

2xn = 2c, lim
n→∞

f(yn) = lim
n→∞

(yn + 3) = c+ 3.

Since c 6= 3, the two limits are not equal and thus f is discontinuous at c.

7. Give an example for each of the following:

(a) f : R→ R continuous only at one point,

(b) (Ex 5.2.7) f : R→ R discontinuous everywhere but |f | continuous everywhere,

(c) f : R→ R continuous on I but discontinuous on Q.

Solution: (a) Question 2 in Part III.

(b) f(x) =

{
1 if x ∈ Q
−1 if x ∈ I

.

(c) The Riemann function.

8. (Ex 5.2.12-13) Let f : R → R satisfy the Cauchy equation f(x + y) = f(x) + f(y) for
any x, y ∈ R. Further suppose that there exists x0 ∈ R at which f is continuous. Show that
f is continuous everywhere and there exists some c ∈ R such that f(x) = cx, ∀x ∈ R.

9. (Optional) Try to make use of the previous question and solve the following function equa-
tions. f is always assumed to be continuous on its domain.

(a) (Ex 5.2.14) Let f : R→ R satisfy the relation f(x+ y) = f(x)f(y) for any x, y ∈ R.

Answer: If f(c) = 0 for some c ∈ R, then f(x) ≡ 0. Otherwise, f(x) = ax where
a = f(1).

(b) f : (0,∞)→ R satisfies the relation f(xy) = f(x)f(y), ∀x, y > 0.

Answer: f(x) = xa or f(x) ≡ 0.



3

(c) f : (0,∞)→ R satisfies the relation f(xy) = f(x) + f(y), ∀x, y > 0.

Answer: f(x) = c lnx where c = f(e).

(d) f : R→ R satisfies the relation f(x+ y) = f(x)ey + f(y)ex, ∀x, y ∈ R.

Answer: f(x) = cxex where c =
f(1)

e
.

(e) f : R→ R satisfies the relation f(x+ y) = f(x) + f(y) + xy, ∀x, y ∈ R.

Answer: f(x) =
x2 + cx

2
where c = 2f(1)− 1.

(f) f : R→ R satisfies the relation f(xy) = yf(x) + xf(y), ∀x, y ∈ R.

Answer: f(x) = cx lnx where c =
f(e)

e
.

(g) f : R→ R satisfies the Jensen equation f

(
x+ y

2

)
=
f(x) + f(y)

2
, ∀x, y ∈ R.

Answer: f(x) = cx+ a where a = f(0), c = f(1)− f(0).

Part II: Some comments.

1. There is no doubt that this chapter, especially Section 5.3, is the MOST IMPORTANT
one of this course and we are studying the most important class of functions: continuous
functions. Section 5.1 is the foundation of later sections and you should memorize the
definition of continuity and its various equivalents. The examples should also be studied
carefully. Section 5.2 is analogous to Section 4.2 and 3.2 but we will also study composite
functions here, which enable us to establish the continuity of many functions. You can refer
to Question 5 and 8 in Part III and obtain a deeper understanding to the continuity of
composite functions.

2. Definition of continuity

If c ∈ A is an isolated point of A, then f(x) is automatically continuous at c.

If c ∈ A is a cluster point of A, then f(x) is continuous at c if and only if the following
conditions hold:

• f is defined at c (this condition is unnecessary when we only consider the limit of f at
c),

• the limit of f at c exists (in R),

• these two values are equal: lim
x→c

f(x) = f(c).

The continuity of f(x) at some cluster point c requires that the limit of f(x) at c exists and
equals a specified value f(c), and thus we just replace L by f(c) in the definition of limit of
a function:

∀ε > 0, ∃δ > 0 such that |x− c| < δ =⇒ |f(x)− f(c)| < ε.

3. (Order preservation property, Ex 5.1.7 and Ex 5.2.10) Suppose f : R→ R is contin-
uous on R and f(c) > 0, then f(x) > 0 for x in some neighborhood of c.
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Part III: Additional exercises.

1. (Optional)(Difficult, for those who are interested) Show that there does not exist a
function f : R→ R such that f(x) is continuous on Q but discontinuous on I.

2. (Question 2 in Part I on Mar 14 revisited) Let f : R→ R be defined by

f(x) =

{
x if x ∈ Q
0 if x ∈ I

.

Determine the points of continuity of f(x).

Proof: We have known that lim
x→0

f(x) = 0 = f(0) and f does not have a limit at any nonzero

numbers. So that f(x) is only continuous at x = 0.

3. Let f : R→ R be defined by

f(x) =

{
sin πx if x ∈ Q
0 if x ∈ I

.

Find the points of continuity of f(x).

Solution: If c /∈ Z, then we consider two sequences (xn) ⊂ Q, (yn) ⊂ I both convergent to
c. Then

lim
n→∞

f(yn) = lim
n→∞

0 = 0, lim
n→∞

f(xn) = lim
n→∞

sin πxn = sin cπ 6= 0.

Therefore, lim
x→c

f(x) does not exist and consequently f is not continuous at c /∈ Z.

If c ∈ Z, then ∀ε > 0 we take δ =
ε

π
. Whenever |x− c| < δ, it follows that

|f(x)− f(c)| = |f(x)− 0|≤ | sin πx| = | sin(πx− πc+ πc)| = |(−1)c sin(x− c)π|
≤ |x− c|π < ε.

Therefore, f is continuous at c ∈ Z.

Remark: Compare this problem with the previous one.

4. Determine the points of continuity of Riemann function (or Thomae’s function)

R(x) =


1

q
if x =

p

q
∈ Q where p, q ∈ Z, q > 0 and gcd(p, q) = 1,

0 if x ∈ I
.

Solution: We have shown that lim
x→c

f(x) = 0, ∀c ∈ R. Therefore, R(x) is continuous at every

irrational number and discontinuous at any rational number.

5. (Question 4 in Part I on Mar 14 revisited, Ex 5.2.6) Let f, g : R→ R and x0, y0 ∈ R.
Suppose lim

x→x0
g(x) = y0 and f is continuous at y0, show that lim

x→x0
f(g(x)) = f(y0).

Proof: Given any ε > 0, because f is continuous at y0, there exists δ1 > 0such that if
|y − y0| < δ1, then |f(y)− f(y0)| < ε.



5

For this δ1 > 0, there exists δ > 0 such that whenever 0 < |x − x0| < δ it follows that
|g(x)− y0| < δ1, which in turn implies that |f(g(x))− f(y0)| < ε.

Therefore, lim
x→x0

f(g(x)) = f(y0).

Remark: Please compare this question with Question 7 below and also Question 4 in
Part I on Mar 14. Notice that this question does not conclude that f ◦ g is continuous at
x0.

6. (Question 1(b) in Part I on Mar 14 continued) Let f : A → R be bounded and c
is a cluster point of A. Suppose lim

x→c
f(x) does not exist in R. Show that there exist two

sequences (xn), (yn) ⊂ A \ {c} and two real numbers L1, L2 such that

lim
n→∞

f(xn) = L1, lim
n→∞

f(yn) = L2, L1 6= L2.

Proof: From (Question 1(b) in Part I on Mar 14, there exists ε0 > 0 and two sequences
(an), (bn) in A \ {c}, both convergent to c, such that |f(an)− f(bn)| ≥ ε0, ∀n.

Since f is bounded, in particular (f(an)), (f(bn)) are also bounded. Then by Bolzano-
Weierstrass Theorem, there are L1, L2 ∈ R and subsequences (f(ank

)) of (f(an)) and (f(bnk
))

of (f(bn)) such that
lim
k→∞

f(ank
) = L1, lim

k→∞
f(bnk

) = L2.

From the Order-Preserving property, we have

|L1 − L2| = lim
k→∞
|f(ank

)− f(bnk
)| ≥ ε0 =⇒ L1 6= L2.

Denote (ank
), (bnk

) as (xn), (yn) respectively and we complete the proof.

7. (On continuity of product) From the theorem, if f, g are continuous at c, then so is fg.
However, if they both are not continuous, there are various cases of continuity of fg. Discuss
the following examples:

(a) f(x) = x, g(x) =

sin
1

x
, x 6= 0

0, x = 0
.

(b) f(x) = x, g(x) =


1

x
, x 6= 0

0, x = 0
.

(c) f(x) =

{
1, x ≥ 0

0, x < 0
, g(x) =

{
0, x ≥ 0

1, x < 0
.

(d) f(x) = g(x) =


1

x
, x 6= 0

0, x = 0
.

Then we have the following results (check them yourself):
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f at c = 0 g at c = 0 fg at c = 0 example

Continuous Continuous Continuous Theorem

Continuous Discontinuous Continuous (a)

Continuous Discontinuous Discontinuous (b)

Discontinuous Discontinuous Continuous (c)

Discontinuous Discontinuous Discontinuous (d)

8. (Question 5 in Part III on Mar 14 revisited) For the following g, f : R → R and
x0, y0 = g(x0) ∈ R, discuss the continuity of g(x) at x0, f(y) at y0 and f(g(x)) at x0
respectively.

(a) g(x) is the Riemann function, f(y) is the Dirichlet function and x0 = π, y0 = 0.

f(g(x)) ≡ 1.

(b) g(x) = x2, f(y) =

{
y if y ≤ 1

y + 1 if y > 1
and x0 = 1, y0 = 1.

f(g(x)) =

{
x2, −1 ≤ x ≤ 1

x2 + 1, x > 1 or x < −1
.

(c) g(x) = sgn(x), f(y) = y(1− y2) and x0 = 0, y0 = 0.

f(g(x)) ≡ 0.

(d) g(x) is the Dirichlet function, f(y) = y and x0 = 0, y0 = 1.

f(g(x)) is the Dirichlet function.

(e) Both of g(x), f(y) are the Dirichlet function and x0 = 0, y0 = 1.

g(f(x)) ≡ 1.

(f) g(x) =


1

x
if x 6= 0

0 if x = 0
, f(y) = sgn(y) and x0 = 0, y0 = 0. g(f(x)) = sgn(x).

Answer:

g(x) at x0 f(y) at y0 f(g(x)) at x0 example

Continuous Continuous Continuous Theorem

Continuous Discontinuous Continuous (a)

Continuous Discontinuous Discontinuous (b)

Discontinuous Continuous Continuous (c)

Discontinuous Continuous Discontinuous (d)

Discontinuous Discontinuous Continuous (e)

Discontinuous Discontinuous Discontinuous (f)
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9. Suppose f(x) is continuous on [a, b] and there is a sequence (xn) ⊂ [a, b] such that lim
n→∞

f(xn) =

A ∈ R. Show that there exists x0 ∈ [a, b] such that f(x0) = A. Does the conclusion still hold
if [a, b] is replaced by (a, b)?

Solution: By Bolzano-Weierstrass Theorem (xn) has a convergent subsequence (xnk
).

Suppose lim
k→∞

xnk
= x0, then x0 ∈ [a, b] (why?).

Notice that (f(xnk
)) is a subsequence of the convergent sequence (f(xn)), and thus we have

f(x0) = lim
k→∞

f(xnk
) = A. Here the first identity is from the continuity of f(x).

If the closed interval is replaced by an open interval, the conclusion does not hold. Consider

f(x) = x defined on (0, 1) and xn =
1

n
, then A = 0 while there is no real number x0 ∈ (0, 1)

with f(x0) = 0.

10. Let f : (a, b) → R. Suppose (f(xn)) is a Cauchy sequence for any Cauchy sequence (xn) in
(a, b), show that f is continuous on (a, b). Is the converse statement true or false?

Solution: If otherwise f(x) is not continuous on (a, b), then f(x) is discontinuous at some
c ∈ (a, b). So ∃ε > 0 such that ∀n ∈ N, there exists xn ∈ V 1

n
(c) with |f(xn)− f(c)| ≥ ε.

Let (yn) = (x1, c, x2, c, x3, c, · · · ), then (yn) is a Cauchy sequence since it converges to c. But
(f(yn)) = (f(x1), f(c), f(x2), f(c), · · · ) is divergent and consequently not a Cauchy sequence.

The converse is false. Consider f : (0, 1) → R defined by f(x) =
1

x
and xn =

1

n
. Then f

is continuous on (0, 1) and (xn) is a Cauchy sequence, but (f(xn)) = (n) is not a Cauchy
sequence.


